Membrane hyperpolarization inhibits agonist‐induced synthesis of inositol 1,4,5‐trisphosphate in rabbit mesenteric artery.
- 1 June 1992
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 451 (1) , 307-328
- https://doi.org/10.1113/jphysiol.1992.sp019166
Abstract
1. Effects of membrane hyperpolarization induced by pinacidil on Ca2+ mobilization induced by noradrenaline (NA) were investigated by measuring intracellular Ca2+ concentration ([Ca2+]i), isometric tension, membrane potential and production of inositol 1,4,5-trisphosphate (IP3) in smooth muscle cells of the rabbit mesenteric artery. 2. Pinacidil (0.1-10 microM) concentration dependently hyperpolarized the smooth muscle membrane with a reduction in membrane resistance. Glibenclamide (1 microM) blocked the membrane hyperpolarization induced by 1 microM-pinacidil. NA (10 microM) depolarized the smooth muscle membrane with associated oscillations. Pinacidil (1 microM) inhibited this response and glibenclamide (1 microM) prevented the action of pinacidil on both the NA-induced events. 3. In thin smooth muscle strips, 10 microM-NA produced a large phasic and a subsequent small tonic increase in [Ca2+]i with associated oscillations. These changes in [Ca2+]i seemed to be coincident with phasic, tonic and oscillatory contractions, respectively. Pinacidil (0.1-1 microM) inhibited the increases in [Ca2+]i and in tension induced by NA, but not by 128 mM-K+. Glibenclamide inhibited these actions of pinacidil. Pinacidil (1 microM) also inhibited the contraction induced by 10 microM-NA in strips treated with A23187 (which functionally removes cellular Ca2+ storage sites), suggesting that membrane hyperpolarization inhibits Ca2+ influxes activated by NA. 4. In Ca2(+)-free solution containing 2 mM-EGTA, NA (10 microM) transiently increased [Ca2+]i, tension and synthesis of IP3. Pinacidil (over 0.1 microM) inhibited the increases in [Ca2+]i, tension and synthesis of IP3 induced by 10 microM-NA in Ca2(+)-free solution containing 5.9 mM-K+, but not in a similar solution containing 40 or 128 mM-K+. Glibenclamide (1 microM) inhibited these actions of pinacidil. These inhibitory actions of pinacidil were still observed in solutions containing low Na+ or low Cl-. These results suggest that pinacidil inhibits NA-induced Ca2+ release from storage sites through an inhibition of IP3 synthesis resulting from its membrane hyperpolarizing action. 5. In beta-escin-treated skinned strips, NA (10 microM) or IP3 (20 microM) increased Ca2+ in Ca2(+)-free solution containing 50 microM-EGTA and 3 microM-guanosine triphosphate (GTP) after brief application of 0.3 microM-Ca2+, suggesting Ca2+ is released from intracellular storage sites. Heparin (500 micrograms/ml, an inhibitor of the IP3 receptor), but not pinacidil (1 microM) or glibenclamide (1 microM), inhibited the Ca2+ release from storage sites induced by NA or IP3. These results suggest that membrane hyperpolarization is essential for the inhibitory action of pinacidil on the NA-induced Ca2(+)-releasing mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)Keywords
This publication has 26 references indexed in Scilit:
- A new generation of Ca2+ indicators with greatly improved fluorescence properties.Published by Elsevier ,2021
- Effects of lemakalim on changes in Ca2+concentration and mechanical activity induced by noradrenaline in the rabbit mesenteric arteryBritish Journal of Pharmacology, 1991
- Myoplasmic binding of fura-2 investigated by steady-state fluorescence and absorbance measurementsBiophysical Journal, 1988
- The potassium channel opening action of pinacidil; studies using biochemical, ion flux and microelectrode techniquesNaunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1988
- Adenosine 5'-Triphosphate-Sensitive Potassium ChannelsAnnual Review of Neuroscience, 1988
- Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta.Circulation Research, 1986
- Transmitter release modulated by α-adrenoceptor antagonists in the rabbit mesenteric artery: a comparison between noradrenaline outflow and electrical activityBritish Journal of Pharmacology, 1984
- Effects of nifedipine derivatives on smooth muscle cells and neuromuscular transmission in the rabbit mesenteric arteryNaunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1983
- EFFECTS OF NIFEDIPINE ON SMOOTH-MUSCLE CELLS OF THE RABBIT MESENTERIC-ARTERY1983
- Cable properties of smooth muscleThe Journal of Physiology, 1968