Magnetic ordering in Cu(NO3)2·2.5D2O

Abstract
The magnetic properties of Cu(NO3)2·2.5 H2O are dominated by the presence of antiferromagnetically coupled pairs of Cu ions with a singlet ground state separated by about 5.2 K from an excited triplet. Neutron-diffraction studies have been performed on a crystal of Cu(NO3)2·2.5 D2O between 0.08 and 0.25 K in fields of up to 60 kOe applied along the monoclinic b axis. At 0.125 K and between 28 and 44 kOe, weak magnetic scattering appears at some of the nuclear peak positions. The magnetic structure consists of alternating antiferromagnetic chains approximately in the ac plane which are antiferromagnetically coupled to neighboring chains in the same plane. The antiferromagnetic axis is perpendicular to the field direction, lying roughly halfway between the a and c axes, and the moment attains a maximum of about 0.45μB per Cu atom at 38 kOe, falling off sharply close to the upper and lower critical fields. Magnetic scattering also appears at a different set of nuclear peak positions above 28 kOe, reaching a saturation value at about 46 kOe. This results from an induced ferromagnetic component along the b axis with a saturation moment of roughly 0.9μB per Cu atom. The results are in accordance with numerous previous studies, and in particular allow a choice between two antiferromagnetic structures proposed by Diederix et al. from proton resonance measurements.

This publication has 25 references indexed in Scilit: