Site-specific genomic integration produces therapeutic Factor IX levels in mice

Abstract
We used the integrase from phage φC31 to integrate the human Factor IX (hFIX) gene permanently into specific sites in the mouse genome. A plasmid containing attB and an expression cassette for hFIX was delivered to the livers of mice by using high-pressure tail vein injection. When an integrase expression plasmid was co-injected, hFIX serum levels increased more than tenfold to ∼4 μg/ml, similar to normal FIX levels, and remained stable throughout the more than eight months of the experiment. hFIX levels persisted after partial hepatectomy, suggesting genomic integration of the vector. Site-specific integration was proven by characterizing and quantifying genomic integration in the liver at the DNA level. Integration was documented at two pseudo-attP sites, native sequences with partial identity to attP, with one site highly predominant. This study demonstrates in vivo gene transfer in an animal by site-specific genomic integration.