Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling
Top Cited Papers
Open Access
- 1 December 2004
- journal article
- Published by Institute of Mathematical Statistics in The Annals of Statistics
- Vol. 32 (6)
- https://doi.org/10.1214/009053604000000823
Abstract
Approximately unbiased tests based on bootstrap probabilities are considered for the exponential family of distributions with unknown expectation parameter vector, where the null hypothesis is represented as an arbitrary-shaped region with smooth boundaries. This problem has been discussed previously in Efron and Tibshirani [Ann. Statist. 26 (1998) 1687-1718], and a corrected p-value with second-order asymptotic accuracy is calculated by the two-level bootstrap of Efron, Halloran and Holmes [Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 13429-13434] based on the ABC bias correction of Efron [J. Amer. Statist. Assoc. 82 (1987) 171-185]. Our argument is an extension of their asymptotic theory, where the geometry, such as the signed distance and the curvature of the boundary, plays an important role. We give another calculation of the corrected p-value without finding the ``nearest point'' on the boundary to the observation, which is required in the two-level bootstrap and is an implementational burden in complicated problems. The key idea is to alter the sample size of the replicated dataset from that of the observed dataset. The frequency of the replicates falling in the region is counted for several sample sizes, and then the p-value is calculated by looking at the change in the frequencies along the changing sample sizes. This is the multiscale bootstrap of Shimodaira [Systematic Biology 51 (2002) 492-508], which is third-order accurate for the multivariate normal model. Here we introduce a newly devised multistep-multiscale bootstrap, calculating a third-order accurate p-value for the exponential family of distributions.Comment: Published at http://dx.doi.org/10.1214/009053604000000823 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.orgKeywords
All Related Versions
This publication has 20 references indexed in Scilit:
- Approximately unbiased tests of regions using multistep-multiscale bootstrap resamplingThe Annals of Statistics, 2004
- On the validity of the likelihood ratio and maximum likelihood methodsJournal of Statistical Planning and Inference, 2003
- The problem of regionsThe Annals of Statistics, 1998
- Notions of LimitingPValues Based on Data Depth and BootstrapJournal of the American Statistical Association, 1997
- More accurate confidence intervals in exponential familiesBiometrika, 1992
- Better Bootstrap Confidence IntervalsJournal of the American Statistical Association, 1987
- Infereni on full or partial parameters based on the standardized signed log likelihood ratioBiometrika, 1986
- Bootstrap confidence intervals for a class of parametric problemsBiometrika, 1985
- Local sufficiencyBiometrika, 1984
- On the Volume of TubesAmerican Journal of Mathematics, 1939