Regulated expression of genes inserted at the human chromosomal beta-globin locus by homologous recombination.
- 1 June 1988
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 85 (11) , 3845-3849
- https://doi.org/10.1073/pnas.85.11.3845
Abstract
We have examined the effect of the site of integration on the expression of cloned genes introduced into cultured erythroid cells. Smithies et al. [Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A. & Kucherlapati, R.S. (1985) Nature (London) 317, 230-234] reported the targeted integration of DNA into the human beta-globin locus on chromosome 11 in a mouse erythroleukemia-human cell hybrid. These hybrid cells can undergo erythroid differentiation leading to greatly increased mouse and human beta-globin synthesis. By transfection of these hybrid cells with a plasmid carrying a modified human beta-globin gene and a foreign gene composed of the coding sequence of the bacterial neomycin-resistance gene linked to simian virus 40 transcription signals (SVneo), cells were obtained in which the two genes are integrated at the beta-globin locus on human chromosome 11 or at random sites. When we examined the response of the integrated genes to cell differentiation, we found that the genes inserted at the beta-globin locus were induced during differentiation, whereas randomly positioned copies were not induced. Even the foreign SVneo gene was inducible when it had been integrated at the beta-globin locus. The results show that genes introduced at the beta-globin locus acquire some of the regulatory properties of globin genes during erythroid differentiation.This publication has 29 references indexed in Scilit:
- Detection of specific sequences among DNA fragments separated by gel electrophoresisPublished by Elsevier ,2006
- Position-independent, high-level expression of the human β-globin gene in transgenic miceCell, 1987
- Contributions of transcriptional and post-transcriptional mechanisms to the regulation of c-myc expression in mouse erythroleukemia cells.Genes & Development, 1987
- A 3' enhancer contributes to the stage-specific expression of the human beta-globin gene.Genes & Development, 1987
- DNA sequences required for regulated expression of β-globin genes in murine erythroleukemia cellsCell, 1984
- Regulated expression of the human β-globin gene family in murine erythroleukaemia cellsNature, 1983
- The regulated expression of β-globin genes introduced into mouse erythroleukemia cellsCell, 1983
- Selective activation of human β - but not γ-globin gene in human fibroblast × mouse erythroleukaemia cell hybridsNature, 1979
- Theoretical analysis of a model for globin messenger RNA accumulation during erythropoiesisJournal of Molecular Biology, 1977
- Selection of Hybrids from Matings of Fibroblasts in vitro and Their Presumed RecombinantsScience, 1964