In Vitro Characterization of Enzymatic Properties and Inhibition of the p53R2 Subunit of Human Ribonucleotide Reductase
- 1 January 2004
- journal article
- Published by American Association for Cancer Research (AACR) in Cancer Research
- Vol. 64 (1) , 1-6
- https://doi.org/10.1158/0008-5472.can-03-3048
Abstract
P53R2 is a newly identified subunit of ribonucleotide reductase (RR) and plays a crucial role in supplying precursors for DNA repair in a p53-dependent manner. In our current work, all three human RR subunit proteins (p53R2, hRRM2, and hRRM1) were prokaryotically expressed and highly purified. Using an in vitro [3H]CDP reduction assay, the activity of RR reconstituted with either p53R2 or hRRM2 was found to be time, concentration, and hRRM1 dependent. The kinetic activity of p53R2-containing RR was about 20–50% lower than that of hRRM2-containing RR. Using a synthetic heptapeptide to inhibit RR activity, it was shown that p53R2 bound to hRRM1 through the same COOH-terminal heptapeptide as hRRM2. However, hRRM2 had a 4.76-fold higher binding affinity for hRRM1 than p53R2, which may explain the reduced RR activity of p53R2 relative to hRRM2. Of interest, p53R2 was 158-fold more susceptible to the iron chelator deferoxamine mesylate than hRRM2, although the iron content of the two proteins determined by atomic absorption spectrometer was almost the same. To the contrary, p53R2 was 2.50-fold less sensitive than hRRM2 to the radical scavenger hydroxyurea, whereas EPR showed similar spectra of the tyrosyl radical in two proteins. Triapine, a new RR inhibitor, was equally potent for p53R2 and hRRM2. These inhibition studies showed that the iron center and tyrosyl radical are involved in RR activity for both p53R2 and hRRM2. The susceptibility differences to RR inhibitors between p53R2 and hRRM2 may lead to a new direction in drug design for human cancer treatment.Keywords
This publication has 17 references indexed in Scilit:
- Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP poolsNature Genetics, 2003
- Oligopeptide inhibition of class I ribonucleotide reductasesBiopolymers, 2003
- Mouse ribonucleotide reductase R2 protein: A new target for anaphase-promoting complex-Cdh1-mediated proteolysisProceedings of the National Academy of Sciences, 2003
- EPR Studies on a Stable Sulfinyl Radical Observed in the Iron−Oxygen-Reconstituted Y177F/I263C Protein R2 Double Mutant of Ribonucleotide Reductase from MouseBiochemistry, 2002
- Iron chelators as therapeutic agents for the treatment of cancerCritical Reviews in Oncology/Hematology, 2002
- Structure and function of the radical enzyme ribonucleotide reductaseProgress in Biophysics and Molecular Biology, 2001
- Mammalian p53R2 Protein Forms an Active Ribonucleotide Reductasein Vitro with the R1 Protein, Which Is Expressed Both in Resting Cells in Response to DNA Damage and in Proliferating CellsJournal of Biological Chemistry, 2001
- RIBONUCLEOTIDE REDUCTASESAnnual Review of Biochemistry, 1998
- The Three-dimensional Structure of Mammalian Ribonucleotide Reductase Protein R2 Reveals a More-accessible Iron-radical Site thanEscherichia coliR2Journal of Molecular Biology, 1996
- Purification and characterization of recombinant mouse and herpes simplex virus ribonucleotide reductase R2 subunitBiochemistry, 1991