Site-Directed Sulfhydryl Labeling of the Lactose Permease of Escherichia coli: Helix X

Abstract
Helix X in the lactose permease of Escherichia coli contains two residues that are irreplaceable with respect to active transport, His322 and Glu325, as well as Lys319, which is charge-paired with Asp240 in helix VII. Structural and dynamic features of transmembrane helix X are investigated here by site-directed thiol modification of 14 single-Cys replacement mutants with N-[14C]ethylmaleimide (NEM) in right-side-out membrane vesicles. Permease mutants with a Cys residue at position 326, 327, 329, 330, or 331 in the cytoplasmic half of the transmembrane domain are alkylated by NEM at 25 °C, a mutant with Cys at position 315 at the periplasmic surface is labeled in the presence of substrate exclusively, and mutants with Cys at positions 317, 318, 320, 321, 324, 328, 332, or 333 do not react with NEM under the conditions tested. Binding of substrate causes increased labeling of a Cys residue at position 315 and decreased labeling of Cys residues at positions 326, 327, and 329. Studies with methanethiosulfonate ethylsulfonate indicate that Cys residues at positions 326, 329, 330, and 331 in the cytoplasmic half are accessible to the aqueous phase from the periplasmic face of the membrane. Ligand binding results in clear attenuation of solvent accessibility of Cys at position 326 and a marginal increase in accessibility of Cys at position 327 to solvent. The findings indicate that the cytoplasmic half of helix X is more reactive/accessible to thiol reagents and more exposed to solvent than the periplasmic half. Furthermore, positions that reflect ligand-induced conformational changes are located on the same face of helix X as Lys319, His322, and Glu325.