Viral vector-mediated transduction of a modified thrombospondin-2 cDNA inhibits tumor growth and angiogenesis

Abstract
Gene therapy represents a possible alternative to the chronic delivery of recombinant antiangiogenic proteins to cancer patients. We have constructed retroviral and adenoviral vectors that express murine N-terminal fragments of thrombospondin-2 (NfTSP2), a potent endogenous inhibitor of tumor growth and angiogenesis. To test the possibility of anticancer gene therapy using NfTSP2, we tested whether an ex vivo retrovirus-mediated procedure could be used for the treatment of tumors. The treatment of tumor-bearing mice with syngenic immortalized cell lines expressing NfTSP2 led to a tumor volume reduction up to 70% as compared with the controls (P<0.005). In addition, the established tumors were eradicated in 40% of the mice treated with NfTSP2-expressing cells. Furthermore, the intratumoral injection of the NfTSP2-expressing adenoviral vector to the human squamous cell carcinoma in nude mice resulted in a significant reduction of the growth rates and the volumes of the carcinoma (P<0.05). Immunohistochemical staining of the tumors indicated that the total area and the average size of tumor vessels were significantly reduced in the treatment group versus the controls (P<0.05). In conclusion, the present study clearly demonstrates that the viral vector-mediated transfer of the NfTSP2 gene could inhibit the growth of tumors by perturbing tumor-associated angiogenesis.