Towards a complete theory of thermal leptogenesis in the SM and MSSM

Abstract
We perform a thorough study of thermal leptogenesis adding finite temperature effects, RGE corrections, scatterings involving gauge bosons and by properly avoiding overcounting on-shell processes. Assuming hierarchical right-handed neutrinos with arbitrary abundancy, successful leptogenesis can be achieved if left-handed neutrinos are lighter than 0.15 eV and right-handed neutrinos heavier than 2 10^7 GeV (SM case, 3sigma C.L.). MSSM results are similar. Furthermore, we study how reheating after inflation affects thermal leptogenesis. Assuming that the inflaton reheats SM particles but not directly right-handed neutrinos, we derive the lower bound on the reheating temperature to be T_RH > 2 10^9 GeV. This bound conflicts with the cosmological gravitino bound present in supersymmetric theories. We study some scenarios that avoid this conflict: `soft leptogenesis', leptogenesis in presence of a large right-handed (s)neutrino abundancy or of a sneutrino condensate.

This publication has 0 references indexed in Scilit: