Structure and Characterization of Flavolipids, a Novel Class of Biosurfactants Produced by Flavobacterium sp. Strain MTN11

Abstract
Herein we report the structure and selected properties of a new class of biosurfactants that we have named the flavolipids. The flavolipids exhibit a unique polar moiety that features citric acid and two cadaverine molecules. Flavolipids were produced by a soil isolate, Flavobacterium sp. strain MTN11 (accession number AY162137 ), during growth in mineral salts medium, with 2% glucose as the sole carbon and energy source. MTN11 produced a mixture of at least 37 flavolipids ranging from 584 to 686 in molecular weight (MW). The structure of the major component (23%; MW = 668) was determined to be 4-[[5-(7-methyl-( E )-2-octenoylhydroxyamino)pentyl]amino]-2-[2-[[5-(7-methyl-( E )-2-octenoylhydroxyamino)pentyl]amino]-2-oxoethyl]-2-hydroxy-4-oxobutanoic acid. The partially purified flavolipid mixture isolated from strain MTN11 exhibited a critical micelle concentration of 300 mg/liter and reduced surface tension to 26.0 mN/m, indicating strong surfactant activity. The flavolipid mixture was a strong and stable emulsifier even at concentrations as low as 19 mg/liter. It was also an effective solubilizing agent, and in a biodegradation study, it enhanced hexadecane mineralization by two isolates, MTN11 (100-fold) and Pseudomonas aeruginosa ATCC 9027 (2.5-fold), over an 8-day period. The flavolipid-cadmium stability constant was measured to be 3.61, which is comparable to that for organic ligands such as oxalic acid and acetic acid. In summary, the flavolipids represent a new class of biosurfactants that have potential for use in a variety of biotechnological and industrial applications.

This publication has 55 references indexed in Scilit: