Abstract
Arsenic (As) is a human carcinogen. Our prior work showed that chronic (>18 weeks) low level (500 nM) arsenite (As3+) exposure induced malignant transformation in a rat liver epithelial cell line (TRL 1215). In these cells, metallothionein (MT) is hyper-expressible, a trait often linked to metal tolerance. Thus, this study examined whether the adverse effects of arsenicals and other metals were altered in these chronic arsenite-exposed (CAsE) cells. CAsE cells, which had been continuously exposed to 500 nM arsenite for 18 to 20 weeks, and control cells, were exposed to As3+, arsenate (As5+), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), antimony (Sb3+), cadmium (Cd2+), cisplatin (cis-Pt), and nickel (Ni2+) for 24 h and cell viability was determined by metabolic integrity. The lethal concentration for 50% of exposed cells (LC50) for As3+ was 140 microM in CAsE cells as compared to 26 microM in control cells, a 5.4-fold increase in tolerance. CAsE cells were also very tolerant to the acute toxic effects of As5+ (LC50 > 4000 microM) compared to control (LC50 = 180 microM). The LC50 for DMA was 4.4-fold higher in CAsE cells than in control cells, but the LC50 for MMA was unchanged. There was a modest cross-tolerance to Sb3+, Cd2+, and cis-Pt in CAsE cells (LC50 1.5-2.0-fold higher) as compared to control. CAsE cells were very tolerant to Ni2+ (LC50 > 8-fold higher). Culturing CAsE cells in As(3+)-free medium for 5 weeks did not alter As3+ tolerance, implicating an irreversible phenotypic change. Cellular accumulation of As was 87% less in CAsE cells than control and the accumulated As was more readily eliminated. Although accumulating much less As, a greater portion was converted to DMA in CAsE cells. Altered glutathione (GSH) levels were not linked with As tolerance. A maximal induction of MT by Zn produced only a 2.5-fold increase in tolerance to As3+ in control cells. Cell lines derived from MT normal mice (MT+/+) were only slightly more resistant (1.6-fold) to As3+ than cells from MT null mice (MT-/-). These results show that CAsE cells acquire tolerance to As3+, As5+, and DMA. It appears that this self-tolerance is based primarily on reduced cellular disposition of the metalloid and is not accounted for by changes in GSH or MT.

This publication has 0 references indexed in Scilit: