Highly clustered scale-free networks

Abstract
We propose a model for growing networks based on a finite memory of the nodes. The model shows stylized features of real-world networks: power law distribution of degree, linear preferential attachment of new links and a negative correlation between the age of a node and its link attachment rate. Notably, the degree distribution is conserved even though only the most recently grown part of the network is considered. This feature is relevant because real-world networks truncated in the same way exhibit a power-law distribution in the degree. As the network grows, the clustering reaches an asymptotic value larger than for regular lattices of the same average connectivity. These high-clustering scale-free networks indicate that memory effects could be crucial for a correct description of the dynamics of growing networks.

This publication has 0 references indexed in Scilit: