Abstract
Under fairly general assumptions on the underlying distribution function, the bootstrap process, pertaining to the sample $q$-quantile, converges weakly in $D_\mathbb{R}$ to the standard Brownian motion. Furthermore, weak convergence of a smoothed bootstrap quantile estimate is proved which entails that in this particular case the smoothed bootstrap estimate outperforms the nonsmoothed one.

This publication has 0 references indexed in Scilit: