Nature of N-nitrosodimethylamine demethylase

Abstract
The nature of enzymes involved in demethylation of N-nitrosodimethylamine (NDMA) was investigated in hepatic microsomes of rats. Compared to the other cytochrome P-450-dependent enzymes. NDMA demethylase had anomalous properties as reported in the literature. However, kinetic analysis suggested a qualitative change in NDMA demethylase induced by phenobarbital (PB) and 3-methylcholanthrene (MC) pretreatment. The inhibition of demethylase by α-naphthoflavone in MC-treated microsomes also suggested that cytochrome P-450 species induced by MC are active in demethylating NDMA. The enhancement of NDMA demethylase activity by metyrapone in PB-treated microsomes was greater than in non-treated ones, and was not observed in MC-treated ones. The result is almost the same as in acetanilide hydroxylation, depending on cytochrome P-450. Pyrazole, tranylcypromine, and aminoacetonitrile, which are selective inhibitors of NDMA demethylation, interacted with cytochrome P-450 species to produce type-II spectra, and typical type-II compounds (aniline, imidazole, and nicotinamide) were inhibitors of the NDMA demethylation. Tranylcypromine irreversibly inhibited microsomal monoamine oxidase [EC 1.4.3.4], but not NDMA demethylase. Semicarbazide (a copper- and pyridoxal-containing amine oxidase [EC 1.4.3.6] inhibitor) had no effect on demethylation. From these results it is concluded that NDMA demethylation depends only on cytochrome P-450-dependent monooxygenases.