The chimeric oncoproteins E2A-PBX1 and E2A-HLF are concentrated within spherical nuclear domains

Abstract
Oncogenic mutation of nuclear transcription factors often is associated with altered patterns of subcellular localization that may be of functional importance. The leukemogenic transcription factor gene E2A-PBX1 is created through fusion of the genes E2A and PBX1 as a result of t(1;19) in acute lymphoblastic leukemia. We evaluated subcellular localization patterns of E2A-PBX1 protein in transfected cells using immunofluorescence. Full-length E2A-PBX1 was exclusively nuclear and was concentrated in spherical domains denoted chimeric-E2A oncoprotein domains (CODs). In contrast, nuclear fluorescence for wild-type E2A or PBX1 proteins was diffuse. Enhanced concentrations of RNA polymerase II within many CODs and the requirement for an E2A-encoded activation domain suggested transcriptional relevance. However, in situ co-detection of nascent transcripts labeled with bromouridine failed to confirm altered transcriptional activity in relation to CODs. CODs also failed to co-localize with other proteins known to occupy functional nuclear compartments, including the transcription factor PML, the spliceosome-associated protein SC-35 and the adenovirus replication factor DBP, or with foci of DNA replication. Co-transfection of Hoxb7, a homeodomain protein capable of enhancing DNA binding by PBX1, impaired COD formation, suggesting that CODs contain E2A-PBX1 protein not associated with DNA. We conclude that, as a 'gain of function' phenomenon requiring protein elements from both E2A and PBX1, COD formation may be relevant to the biology of E2A-PBX1 in leukemogenesis.

This publication has 0 references indexed in Scilit: