Adaptive control of linear stochastic evolution systems

Abstract
An adaptive control problem for some linear stochastic evolution systems in Hilbert spaces is formulated and solved in this paper. The solution includes showing the strong consistency of a family of least squares estimates of the unknown parameters and the convergence of the average quadratic costs with a control based on these estimates to the optimal average cost. The unknown parameters in the model appear affinely in the infinitesimal generator of the C 0 semigroup that defines the evolution system. A recursive equation is given for a family of least squares estimates and the bounded linear operator solution of the stationary Riccati equation is shown to be a continuous function of the unknown parameters in the uniform operator topology