Cloning and sequence analysis of desmosomal glycoproteins 2 and 3 (desmocollins): cadherin-like desmosomal adhesion molecules with heterogeneous cytoplasmic domains.
Open Access
- 15 April 1991
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 113 (2) , 381-391
- https://doi.org/10.1083/jcb.113.2.381
Abstract
Desmosomal glycoproteins 2 and 3 (dg2 and 3) or desmocollins have been implicated in desmosome adhesion. We have obtained a 5.0-kb-long clone for dg3 from a bovine nasal epidermal lambda gt11 cDNA library. Sequence analysis of this clone reveals an open reading frame of 2,517 bases encoding a polypeptide of 839 amino acids. The sequence consists of a signal peptide of 28 amino acids, a precursor sequence of 104 amino acids, and a mature protein of 707 amino acids. The latter has the characteristics of a transmembrane glycoprotein with an extracellular domain of 550 amino acids and a cytoplasmic domain of 122 amino acids. The sequence of a partial clone from the same library shows that dg2 has an alternative COOH terminus that is extended by 54 amino acids. Genomic DNA sequence data show that this arises by splicing out of a 46-bp exon that encodes the COOH-terminal 11 amino acids of dg3 and contains an in-frame stop codon. The extracellular domain of dg3 shows 39.4% protein sequence identity with bovine N-cadherin and 28.4% identity with the other major desmosomal glycoprotein, dg1, or desmoglein. The cytoplasmic domain of dg3 and the partial cytoplasmic domain of dg2 show 23 and 24% identity with bovine N-cadherin, respectively. The results support our previous model for the transmembrane organization of dg2 and 3 (Parrish, E.P., J.E. Marston, D.L. Mattey, H.R. Measures, R. Venning, and D.R. Garrod. 1990. J. Cell Sci. 96:239-248; Holton, J.L., T.P. Kenny, P.K. Legan, J.E. Collins, J.N. Keen, R. Sharma, and D.R. Garrod. 1990. J. Cell Sci. 97:239-246). They suggest that these glycoproteins are specialized for calcium-dependent adhesion in their extracellular domains and, cytoplasmically, for the molecular interactions involved in desmosome plaque formation. Moreover this represents the first example of alternative splicing within the cadherin family of cell adhesion molecules.Keywords
This publication has 61 references indexed in Scilit:
- Detection of specific sequences among DNA fragments separated by gel electrophoresisPublished by Elsevier ,2006
- CADHERINS: A MOLECULAR FAMILY IMPORTANT IN SELECTIVE CELL-CELL ADHESIONAnnual Review of Biochemistry, 1990
- Identification of a cadherin cell adhesion recognition sequenceDevelopmental Biology, 1990
- Molecular cloning of a human Ca2+-dependent cell-cell adhesion molecule homologous to mouse placental cadherin: its low expression in human placental tissues.The Journal of cell biology, 1989
- At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cellsJournal of Molecular Biology, 1987
- Organization of cytokeratin bundles by desmosomes in rat mammary cells.The Journal of cell biology, 1986
- Inhibition of desmosome formation with tunicamycin and with lectin in corneal cell aggregatesDevelopmental Biology, 1982
- Prediction of protein antigenic determinants from amino acid sequences.Proceedings of the National Academy of Sciences, 1981
- ISOLATION OF EPIDERMAL DESMOSOMESThe Journal of cell biology, 1974
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970