Abstract
We present an analytical method to study magnetic fields in permanent-magnet brushless motors, taking into consideration the effect of stator slotting. Our attention concentrates particularly on the instantaneous field distribution in the slot regions where the magnet pole transition passes over the slot opening. The accuracy in the flux density vector distribution in such regions plays a critical role in the prediction of the magnetic forces, i.e., the cogging torque and unbalanced magnetic pull. However, the currently available analytical solutions for calculating air-gap fields in permanent magnet motors can estimate only the distribution of the flux density component in the radial direction. Magnetic field and forces computed by the new analytical method agree well with those obtained by the finite-element method. The analytical method provides a useful tool for design and optimization of permanent-magnet motors.