Abstract
Like other cancer therapy agents under development, radionuclide therapies are usually evaluated in a progressive series of clinical trials after basic science, human cell culture and animal model studies. Toxicities during these trials are graded using common scoring systems that are in widespread use such as the Common Toxicity Criteria from the National Cancer Institute. Information on normal tissue toxicity from radionuclides is more limited than that from external beam radiation and is more variable. Variability is likely due to many biologic factors as well as less precise dose quantitation than those used in external beam radiation practice. As expected based on known radiobiologic effects, tolerance to radionuclide therapy appears to exceed that from high dose rate external beam radiation in most organs. Although the correlation between reported dose estimates and toxicity has progressively and substantially improved over the past two decades, further progress is needed to establish optimal toxicity predictive relationships. Continued refinement of dosimetry techniques and standardization is expected to increase the accuracy and comparability of radiation dose reports between institutions as well as improve dose/response correlation.