Abstract
Image reconstruction from nonuniformly sampled frequency domain data is an important problem that arises in computed imaging. The current reconstruction techniques suffer from fundamental limitations in their model and implementation that result in blurred reconstruction and/or artifacts. Here, we present a new approach for solving this problem that relies on a more realistic model and involves an explicit measure for the reconstruction accuracy that is optimized iteratively. The image is assumed piecewise constant to impose practical display constraints using pixels. We express the mapping of these unknown pixel values to the available frequency domain values as a linear system. Even though the system matrix is shown to be dense and too large to solve for practical purposes, we observe that applying a simple orthogonal transformation to the rows of this matrix converts the matrix into a sparse format. The transformed system is subsequently solved using the conjugate gradient method. The proposed method is applied to reconstruct images of a numerical phantom as well as actual magnetic resonance images using spiral sampling. The results support the theory and show that the computational load of this method is similar to that of other techniques. This suggests its potential for practical use.

This publication has 0 references indexed in Scilit: