Crystal Structures of a Mutant (βK87T) Tryptophan Synthase α2β2 Complex with Ligands Bound to the Active Sites of the α- and β-Subunits Reveal Ligand-Induced Conformational Changes
- 1 June 1997
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 36 (25) , 7664-7680
- https://doi.org/10.1021/bi9700429
Abstract
Three-dimensional structures are reported for a mutant (betaK87T) tryptophan synthase alpha2beta2 complex with either the substrate L-serine (betaK87T-Ser) or product L-tryptophan (betaK87T-Trp) at the active site of the beta-subunit, in which both amino acids form external aldimines with the coenzyme, pyridoxal phosphate. We also present structures with L-serine bound to the beta site and either alpha-glycerol 3-phosphate (betaK87T-Ser-GP) or indole-3-propanol phosphate (betaK87T-Ser-IPP) bound to the active site of the alpha-subunit. The results further identify the substrate and product binding sites in each subunit and provide insight into conformational changes that occur upon formation of these complexes. The two structures having ligands at the active sites of both alpha- and beta-subunits reveal an important new feature, the ordering of alpha-subunit loop 6 (residues 179-187). Closure of loop 6 isolates the active site of the alpha-subunit from solvent and results in interaction between alphaThr183 and the catalytic residue alphaAsp60. Other conformational differences between the wild type and these two mutant structures include a rigid-body rotation of the alpha-subunit of approximately 5 degrees relative to the beta-subunit and large movements of part of the beta-subunit (residues 93-189) toward the rest of the beta-subunit. Much smaller differences are observed in the betaK87T-Ser structure. Remarkably, binding of tryptophan to the beta active site results in conformational changes very similar to those observed in the betaK87T-Ser-GP and betaK87T-Ser-IPP structures, with exception of the disordered alpha-subunit loop 6. These large-scale changes, the closure of loop 6, and the movements of a small number of side chains in the alpha-beta interaction site provide a structural base for interpreting the allosteric properties of tryptophan synthase.Keywords
This publication has 12 references indexed in Scilit:
- Analysis of protein loop closure: Two types of hinges produce one motion in lactate dehydrogenasePublished by Elsevier ,2004
- Subunit communication in the tryptophan synthase α2β2 complex Effects of β subunit ligands on proteolytic cleavage of a flexible loop in the α subunitFEBS Letters, 1992
- Mechanisms of cooperativity and allosteric regulation in proteinsQuarterly Reviews of Biophysics, 1989
- Ribbon models of macromoleculesJournal of Molecular Graphics, 1987
- Addition of symmetry-related contact restraints to PROTIN and PROLSQJournal of Applied Crystallography, 1987
- Phosphocholine binding immunoglobulin Fab McPC603Journal of Molecular Biology, 1986
- Analytical molecular surface calculationJournal of Applied Crystallography, 1983
- Stereochemistry and mechanism of reactions catalyzed by tryptophanase and tryptophan synthetaseJournal of the American Chemical Society, 1976
- 2 Pyridoxal-Linked Elimination and Replacement ReactionsPublished by Elsevier ,1972
- Identification of the triose phosphate formed in the tryptophan synthetase reactionBiochimica et Biophysica Acta, 1960