Stability of linear feedback systems with random communication delays
- 1 April 1994
- journal article
- research article
- Published by Taylor & Francis in International Journal of Control
- Vol. 59 (4) , 925-953
- https://doi.org/10.1080/00207179408923111
Abstract
Integral control of large-scale systems implies coordination of activities by information exchange via communication networks. Usually these networks are shared with other users. Thus traffic conditions in the network may introduce time-varying random delays in the control loop with adverse effects on its performance and stability. Hence, the control must be designed to compensate for these delays. Recent work in modelling integrated control and communication systems has shown that the communication specific phenomena inducing random communication delays (such as multirate sampling, vacant sampling and message rejection) may be encompassed by finite-dimensional linear discrete-time models, provided that the plant and the controller are linear and time invariant. Existing approaches to the design of integrated control systems rely on conservative stability tests, because only sufficient stability conditions were found for systems with random time-varying delays. In this paper, necessary and sufficient conditions are found for zero-state mean-square exponential stability of the considered class of control systems. Numerical tests for zero-state stability are outlined and illustrated by a simple example. Finally, the results are also demonstrated on specific hardware, a multiprocessor real-time control network which has been recently developed.Keywords
This publication has 23 references indexed in Scilit:
- Integrated Communication and Control Systems: Part III—Nonidentical Sensor and Controller SamplingJournal of Dynamic Systems, Measurement, and Control, 1990
- A method for computing the interval of delay values for which a differential-delay system is stableIEEE Transactions on Automatic Control, 1988
- Stability of digital control with computer interruptionsIEEE Transactions on Automatic Control, 1986
- Discrete-time markovian-jump linear quadratic optimal controlInternational Journal of Control, 1986
- Necessary and sufficient conditions for delay-independent stability of linear autonomous systemsIEEE Transactions on Automatic Control, 1980
- Stability of a system with variable time delayIEEE Transactions on Automatic Control, 1980
- Stabilization of linear systems with time-varying delayIEEE Transactions on Automatic Control, 1979
- Stability of systems with nonlinear feedback through randomly time-varying delaysIEEE Transactions on Automatic Control, 1975
- Some Theorems on Matrix Differentiation with Special Reference to Kronecker Matrix ProductsJournal of the American Statistical Association, 1969
- Feedback control of a class of linear systems with jump parametersIEEE Transactions on Automatic Control, 1969