Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats.

Abstract
The decrease in cardiac sympathetic tone and heart rate after low-intensity exercise training may have hemodynamic consequences in spontaneously hypertensive rats (SHR). The effects of exercise training of low and high intensity on resting blood pressure, cardiac output, and total peripheral resistance were studied in sedentary ( n = 17), low- ( n = 17), and high-intensity exercise-trained ( n = 17) SHR. Exercise training was performed on a treadmill for 60 min, 5 times per week for 18 weeks, at 55% or 85% maximum oxygen uptake. Blood pressure was evaluated by a cannula inserted into the carotid artery, and cardiac output was evaluated by a microprobe placed around the ascending aorta. Low-intensity exercise-trained rats had a significantly lower mean blood pressure than sedentary and high-intensity exercise-trained rats (160 ± 4 vs. 175 ± 3 and 173 ± 2 mmHg, respectively). Cardiac index (20 ± 1 vs. 24 ± 1 and 24 ± 1 ml ⋅ min−1 ⋅ 100 g−1, respectively) and heart rate (332 ± 6 vs. 372 ± 14 and 345 ± 9 beats/min, respectively) were significantly lower in low-intensity exercise-trained rats than in sedentary and high-intensity exercise-trained rats. No significant difference was observed in stroke volume index and total peripheral resistance index in all groups studied. In conclusion, low-intensity, but not high-intensity, exercise training decreases heart rate and cardiac output and, consequently, attenuates hypertension in SHR.