Monocular aniseikonia: a motion parallax analogue of the disparity-induced effect

Abstract
Mayhew and Longuet-Higgins have recently outlined a computational model of binocular depth perception in which the small vertical disparities between the two eyes' views of a three-dimensional scene are used to determine the 'viewing parameters' of fixation distance (d) and the angle of asymmetric convergence of the eyes (g). The d/g hypothesis, as it has been called, correctly predicts that a fronto-parallel surface, viewed with a vertically magnifying lens over one eye, should appear to be rotated in depth about a vertical axis. We report here a comparable illusion for surfaces specified by monocular motion parallax information, which can be explained more simply by considering the differential invariants of the optic flow field. In addition, our observations suggest that the disparity-induced effect is not a 'whole field' phenomenon nor one limited to small magnification differences between the eyes.