Abstract
In this paper a method will be described which is intended to exhibit some relationships between sets of tautologies determined by truth-tables. This method is an attempt to form an algebra of truth-tables. The results sketched below are restricted to sets of tautologies determined by truth-tables with a finite number of elements and involving a single binary connective Δ. However, most of the results can be easily extended to the case of Tarski's logical matrix and even to a more general case.We denote by S() the set of all tautologies (-tautologies) according to a given truth-table . Let describe a binary connective Δ. Then Δ()(x, y) stands for the truth-value of ΔPQ, when P has the truth-value x and Q has the truth-value y. If no ambiguity may arise we write Δ(x, y) or Δ() for Δ()(x, y).

This publication has 2 references indexed in Scilit: