The needle in the haystack: Application of breast fine-needle aspirate samples to quantitative protein microarray technology
Open Access
- 8 May 2007
- Vol. 111 (3) , 173-184
- https://doi.org/10.1002/cncr.22686
Abstract
BACKGROUND. There is an unmet clinical need for economic, minimally invasive procedures that use a limited number of cells for the molecular profiling of tumors in individual patients. Reverse‐phase protein microarray (RPPM) technology has been applied successfully to the quantitative analysis of breast, ovarian, prostate, and colorectal cancers using frozen surgical specimens. METHODS. For this report, the authors investigated the novel use of RPPM technology for the analysis of both archival cytology aspirate smears and frozen fine‐needle aspiration (FNA) samples. RPPMs were printed with 63 breast FNA samples that were obtained before, during, and after treatment from 21 patients who were enrolled in a Phase II trial of neoadjuvant capecitabine and docetaxel therapy for breast cancer. RESULTS. Based on an MCF7 cell line model of breast adenocarcinoma, the sensitivity of the RPPM detection method was in the femtomolar range with a coefficient of variance R2 = 0.9887) for a membrane receptor protein (epidermal growth factor receptor; R2 = 0.9935). CONCLUSIONS. The results from this study indicated that low‐abundance analytes and phosphorylated and nonphosphorylated proteins in specimens that consist of a few thousand cells obtained through FNA can be quantified with RPPM technology. The ability to monitor the in vivo state of cell‐signaling proteins before and after treatment potentially will augment the ability to design individualized therapy regimens through the mapping of aberrant cell‐signaling phenotypes. The mapping of these protein pathways will further the development of rational drug targets. Cancer (Cancer Cytopathol) 2007. Published 2007 by the American Cancer Society.Keywords
This publication has 42 references indexed in Scilit:
- Breast Fine Needle Aspiration Biopsy: Prevailing Recommendations and Contemporary PracticesClinics In Laboratory Medicine, 2005
- A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast CancerNew England Journal of Medicine, 2004
- Genomic and proteomic technologies for individualisation and improvement of cancer treatmentEuropean Journal Of Cancer, 2004
- Evaluation of Abnormal Mammography Results and Palpable Breast AbnormalitiesAnnals of Internal Medicine, 2003
- DNA microarrays in breast cancer: the promise of personalised medicineThe Lancet, 2003
- A Gene-Expression Signature as a Predictor of Survival in Breast CancerNew England Journal of Medicine, 2002
- Molecular and Biologic Markers of Premalignant Lesions of Human BreastAdvances in Anatomic Pathology, 2002
- Gene Expression Profiling of Lymphoid MalignanciesAnnual Review of Medicine, 2002
- Prognostic Factors in Breast CancerArchives of Pathology & Laboratory Medicine, 2000
- Gene silencing: Shrinking the black box of RNAiCurrent Biology, 2000