Synthetic nano-scale fibrous extracellular matrix

Abstract
Biodegradable polymers have been widely used as scaffolding materials to regenerate new tissues. To mimic natural extracellular matrix architecture, a novel highly porous structure, which is a three-dimensional interconnected fibrous network with a fiber diameter ranging from 50 to 500 nm, has been created from biodegradable aliphatic polyesters in this work. A porosity as high as 98.5% has been achieved. These nano-fibrous matrices were prepared from the polymer solutions by a procedure involving thermally induced gelation, solvent exchange, and freeze-drying. The effects of polymer concentration, thermal annealing, solvent exchange, and freezing temperature before freeze-drying on the nano-scale structures were studied. In general, at a high gelation temperature, a platelet-like structure was formed. At a low gelation temperature, the nano-fibrous structure was formed. Under the conditions for nano-fibrous matrix formation, the average fiber diameter (160–170 nm) did not change statistically with polymer concentration or gelation temperature. The porosity decreased with polymer concentration. The mechanical properties (Young's modulus and tensile strength) increased with polymer concentration. A surface-to-volume ratio of the nano-fibrous matrices was two to three orders of magnitude higher than those of fibrous nonwoven fabrics fabricated with the textile technology or foams fabricated with a particulate-leaching technique. This synthetic analogue of natural extracellular matrix combined the advantages of synthetic biodegradable polymers and the nano-scale architecture of extracellular matrix, and may provide a better environment for cell attachment and function. © 1999 John Wiley & Sons, Inc. J Biomed Mater Res, 46, 60–72, 1999.