Abstract
Spatial and temporal patterns of gene flow determine the extent to which populations can differentiate from one another as a result of natural selection or genetic drift. In this study, we investigated pollen-mediated gene flow in two eastern Kansas populations of the subdioecious tree species, Gleditsia triacanthos L. (Leguminosae), or honeylocust. In 2 yr at each site, we used paternity-exclusion analysis to estimate the proportion of seeds sired by immigrant pollen. We also used a single-parent and parent-pair exclusion analysis on naturally established seedlings and saplings to estimate gene flow into one site over a 12-yr period and into the second site over a 22-yr period. Results of both analyses showed high minimum estimates of pollen gene flow into each site (17%-30%). In each population, we found significantly less gene flow in years of high fruit production than in years of low fruit production, but in one population, we observed little variation in gene-flow rates among age classes of seedlings and saplings. The level of pollen gene flow showed weak negative dependence on the relative isolation distances of the maternal trees sampled (140-240 m at one site vs. 85-120 m at the second site), and gene-flow estimates from naturally established juveniles were very similar at the two sites. Within populations, a multiple regression model showed that maximum-likelihood estimates of male fertility were negatively associated with distances between mates and positively associated with male size as measured by stem diameter. In neither population, however, did the regression explain more than 16% of the total variation in male fertilities.
Funding Information
  • University of Kansas
  • Doctoral Dissertation Improvement (BSR-851447)