A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition
- 28 July 2003
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 100 (16) , 9518-9523
- https://doi.org/10.1073/pnas.1633616100
Abstract
The molecular events that lead to the onset of labor in humans and in other mammalian species remain unclear. We propose that a decline in coactivators containing histone acetylase activity in myometrium may contribute to the onset of labor by impairing the function of the progesterone–progesterone receptor (PR) complex. As assessed by semiquantitative and real-time RT-PCR, immunohistochemistry, and immunoblotting, expression of the PR coactivators cAMP-response element-binding protein (CREB)-binding protein and steroid receptor coactivators 2 and 3 was decreased in fundal uterine tissue of women in labor. Using the mouse as an animal model, we also found decreased coactivator levels in uterine tissues at term. In both human and mouse, the levels of acetylated histone H3 were also decreased in uterine tissues at term. Administration of trichostatin A, a specific and potent histone deacetylase inhibitor, to pregnant mice late in gestation increased histone acetylation and delayed the initiation of parturition by 24–48 h, suggesting the functional importance of the decline in histone acetylation in the initiation of labor. These findings suggest that the decline in PR coactivator expression and in histone acetylation in the uterus near term may impair PR function by causing a functional progesterone withdrawal. The resulting decrease in expression of PR-responsive genes should increase sensitivity of the uterus to contractile stimuli.Keywords
This publication has 44 references indexed in Scilit:
- Translating the Histone CodeScience, 2001
- Sporadic cases of dilated cardiomyopathies associated with atrioventricular conduction defects are not linked to mutation within the connexins 40 and 43 genesPublished by Oxford University Press (OUP) ,1999
- The Parturition Defect in Steroid 5 -Reductase Type 1 Knockout Mice Is Due to Impaired Cervical RipeningMolecular Endocrinology, 1999
- Nuclear Receptor Coregulators: Cellular and Molecular BiologyEndocrine Reviews, 1999
- What's Up and Down with Histone Deacetylation and Transcription?Cell, 1997
- A CBP Integrator Complex Mediates Transcriptional Activation and AP-1 Inhibition by Nuclear ReceptorsCell, 1996
- Myometrial estradiol and progesterone receptor changes in preterm and term pregnanciesObstetrics & Gynecology, 1995
- Sequence and Characterization of a Coactivator for the Steroid Hormone Receptor SuperfamilyScience, 1995
- Myometrial connexin 43 trafficking and gap junction assembly at term and in preterm laborMolecular Reproduction and Development, 1992
- Confirmation of assigment of a locus for rubinstein‐taybi syndrome gene to 16p13.3American Journal of Medical Genetics, 1992