The Near‐Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs

Abstract
We identify the pressure--broadened red wings of the saturated potassium resonance lines at 7700 \AA as the source of anomalous absorption seen in the near-infrared spectra of Gliese 229B and, by extension, of methane dwarfs in general. This conclusion is supported by the recent work of Tsuji {\it et al.} 1999, though unlike them we find that dust need not be invoked to explain the spectra of methane dwarfs shortward of 1 micron. We find that a combination of enhanced alkali abundances due to rainout and a more realistic non-Lorentzian theory of resonant line shapes may be all that is needed to properly account for these spectra from 0.5 to 1.0 microns. The WFPC2 $I$ measurement of Gliese 229B is also consistent with this theory. Furthermore, a combination of the blue wings of this K I resonance doublet, the red wings of the Na D lines at 5890 \AA, and, perhaps, the Li I line at 6708 \AA can explain in a natural way the observed WFPC2 $R$ band flux of Gliese 229B. Hence, we conclude that the neutral alkali metals play a central role in the near-infrared and optical spectra of methane dwarfs and that their lines have the potential to provide crucial diagnostics of brown dwarfs. We speculate on the systematics of the near-infrared and optical spectra of methane dwarfs, for a given mass and composition, that stems from the progressive burial with decreasing \teff of the alkali metal atoms to larger pressures and depths.Comment: Revised and accepted to Ap.J. volume 531, March 1, 2000, also available at http://jupiter.as.arizona.edu/~burrows/papers/BMS.p