Automated morphological classification of APM galaxies by supervised artificial neural networks

Abstract
We train artificial neural networks to classify galaxies based solely on the morphology of the galaxy images as they appear on blue survey plates. The images are reduced and morphological features such as bulge size and the number of arms are extracted, all in a fully automated manner. The galaxy sample was first classified by six independent experts. We use several definitions for the mean type of each galaxy, based on those classifications. We then train and test the network on these features. We find that the rms error of the network classifications, as compared with the mean types of the expert classifications, is 1.8 Revised Hubble Types. This is comparable to the overall rms dispersion between the experts. This result is robust and almost completely independent of the network architecture used.
All Related Versions

This publication has 0 references indexed in Scilit: