The Symbiotic Neutron Star Binary GX 1+4/V2116 Ophiuchi

Abstract
We present multiwavelength observations of this S-type symbiotic LMXB which consists of a 2-min X-ray pulsar accreting from an M6 III giant. This is the only symbiotic system definitely known to contain a neutron star. The steady interstellar extinction toward the binary (Av=5) contrasts the variable N_H inferred from X-ray measurements, most likely evidence for a stellar wind. The mass donor is probably near the tip of the first-ascent red giant branch, in which case the system is 3-6 kpc distant and has an X-ray luminosity of 10^37 erg/s. It is also possible, though less likely, that the donor star is just beginning its ascent of the asymptotic giant branch, in which case the system is 12-15 kpc distant and has an X-ray luminosity of 10^38 erg/s. However, our measured Av argues against such a large distance. We show that the dense (10^9 cm^-3) emission-line nebula enshrouding the binary is powered by UV radiation from an accretion disk. The emission-line spectrum constrains the temperature and inner radius of the disk (and thus the pulsar's magnetic field strength), and we discuss this in the context of the accretion torque reversals observed in the pulsar. We also show that the binary period must be >100 d and is most likely >260 d, making GX 1+4 the only known LMXB with Porb>10 d. If the mass donor fills its Roche lobe, the mass transfer must be highly super-Eddington, requiring much mass loss from the binary. We discuss the alternative that the disk forms from the slow, dense stellar wind expected from the red giant.

This publication has 0 references indexed in Scilit: