Tunable Non-local Spin Control in a Coupled Quantum Dot System

  • 8 April 2004
Abstract
The effective interaction between magnetic impurities in metals that can lead to various magnetic ground states often competes with a tendency for electrons near impurities to screen the local moment (Kondo effect). The simplest system exhibiting the richness of this competition, the two-impurity Kondo system, is here realized experimentally in the form of two quantum dots coupled through an open conducting region. We demonstrate non-local spin control by suppressing and splitting Kondo resonances in one quantum dot by changing electron number and coupling of the other dot. Results suggest an approach to non-local spin control relevant to quantum information processing.

This publication has 0 references indexed in Scilit: