Abstract
A positive Liapunov exponent for the critical value of an S-unimodal mapping implies a positive Liapunov exponent of the backward orbit of the critical point, uniform hyperbolic structure on the set of periodic points and an exponential diminution of the length of the intervals of monotonicity. This is the proof of the Collet-Eckmann conjecture from 1981 in the general case.

This publication has 8 references indexed in Scilit: