Membrane production and yolk degradation in the early fly embryo (Calliphora erythrocephala meig.): An ultrastructural analysis

Abstract
Formation of nuclear envelopes during the last cleavage mitosis and the formation of the cell membranes during the cellularization of the blastoderm have been studied ultrastructurally in the blowfly egg. Dense bodies arising from yolk granules by budding could contain membrane material destined to be incorporated into the new membranes of the blastoderm. The presence of transitional structures indicates that these bodies can be converted into dark multivesicular bodies. Large amounts of endoplasmic reticulum are found around the mitotic nuclei. Clusters or branched chains of vesicles associated with this are interpreted as evidence for the formation of endoplasmic reticulum by the breakdown of dark multivesicular bodies. Nuclear envelopes of mitotic daughter nuclei probably originate from endoplasmic reticulum. The egg contains both intranuclear and extranuclear annulate lamellae. The main events of cytokinesis are furrow initiation and cell membrane growth during the slow first phase, but probably only cytokinetic movement during the rapid second phase. On the assumption that cell membrane growth occurs by incorporation of complete membrane pieces, the addition of coated vesicles and/or light multivesicular bodies is definitely most probable. Some intermediate profiles indicate that light and dark multivesicular bodies are related. The membrane needed for second phase cytokinesis could well be provided by the unfolding of surface microvilli and protuberances of the furrow canal.