A Sturm-Liouville Theorem for Some Odd Multivalued Maps
- 1 November 1975
- journal article
- Published by JSTOR in Proceedings of the American Mathematical Society
- Vol. 53 (1) , 72-74
- https://doi.org/10.2307/2040369
Abstract
Let <!-- MATH $T:H \to {2^H}$ --> be the subdifferential of a real l. s. c. convex function on an infinite dimensional, separable, real Hilbert space . Assuming that is odd (i.e. <!-- MATH $T( - u) = - Tu,\;\forall u\;\epsilon H)$ --> ), <!-- MATH $0\epsilon T(0),\;{(I + T)^{ - 1}}$ --> is compact and satisfies a geometrical condition, we prove that has an infinite sequence <!-- MATH $\{ {\lambda _n}\}$ --> of eigenvalues such that <!-- MATH $0 \leqslant {\lambda _{n\,\overrightarrow n }} + \infty$ --> .
Keywords
This publication has 6 references indexed in Scilit:
- Variational Inequalities and Eigenvalue Problems for Nonlinear Maximal Monotone Operators in a Hilbert SpaceAmerican Journal of Mathematics, 1975
- Un théorème de Sturm-Liouville pour une classe d'opérateurs non linéaires maximaux monotonesJournal of Mathematical Analysis and Applications, 1974
- Some aspects of nonlinear eigenvalue problemsRocky Mountain Journal of Mathematics, 1973
- Lusternik-Schnirelman theory and non-linear eigenvalue problemsMathematische Annalen, 1972
- Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential EquationsPublished by Elsevier ,1971
- Topological Methods in the Theory of Nonlinear Integral Equations.The American Mathematical Monthly, 1968