A Sturm-Liouville Theorem for Some Odd Multivalued Maps

Abstract
Let <!-- MATH $T:H \to {2^H}$ --> be the subdifferential of a real l. s. c. convex function on an infinite dimensional, separable, real Hilbert space . Assuming that is odd (i.e. <!-- MATH $T( - u) = - Tu,\;\forall u\;\epsilon H)$ --> ), <!-- MATH $0\epsilon T(0),\;{(I + T)^{ - 1}}$ --> is compact and satisfies a geometrical condition, we prove that has an infinite sequence <!-- MATH $\{ {\lambda _n}\}$ --> of eigenvalues such that <!-- MATH $0 \leqslant {\lambda _{n\,\overrightarrow n }} + \infty$ --> .