ANTIBODY-INDUCED REJECTION OF PIG PROISLET XENOGRAFTS IN CD4+ T CELL-DEPLETED DIABETIC MICE

Abstract
Reversal of diabetes in mice was achieved following in vivo depletion of host CD4+ T cells and transplantation of xenogeneic fetal pig proislets (pancreatic islet precursors). These procedures resulted in xenograft tolerance since established pig proislet xenografts were not rejected by antipig antibodies produced in the host, and rejection was not induced following the administration of donor major histocompatibility complex-specific pig lymphocytes. Proislet xenografts were rejected following the administration of donor MHC-specific hyperimmune antipig PBL serum raised in normal mice. Although established proislet xenografts in anti-CD4-treated mice are sensitive to antibody-mediated destruction, such hosts are unable to produce an antibody response that leads to graft rejection. The study indicates that the mechanism of preventing xenograft rejection by anti-CD4 treatment in vivo involves not only initial CD4+ T cell depletion but also quantitative and/or qualitative modulation of a CD4+ T cell-dependent antibody response. As a consequence, an apparent state of xenograft tolerance is produced.

This publication has 16 references indexed in Scilit: