X-ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019 W/cm2

Abstract
Analysis is presented of K‐shell spectra obtained from solid density plasmas produced by a high contrast (1010:1) subpicosecond laser pulse (0.5 μm) at 1018–1019 W/cm2. Stark broadening measurements of He‐like and Li‐like lines are used to infer the mean electron density at which emission takes place. The measurements indicate that there is an optimum condition to produce x‐ray emission at solid density for a given isoelectronic sequence, and that the window of optimum conditions to obtain simultaneously the shortest and the brightest x‐ray pulse at a given wavelength is relatively narrow. Lower intensity produces a short x‐ray pulse but low brightness. The x‐ray yield (and also the energy fraction in hot electrons) increases with the laser intensity, but above some laser intensity (1018 W/cm2 for Al) the plasma is overdriven: during the expansion, the plasma is still hot enough to emit, so that emission occurs at lower density and lasts much longer. Energy transport measurements indicate that approximately 6% of the laser energy is coupled to the target at 1018 W/cm2 (1% in thermal electrons with Te≊0.6 keV and 5% in suprathermal electrons with Th≊25 keV). At Iλ2=1018 W μm2/cm2 (no prepulse) around 1010 photons are emitted per laser shot, in 2π srd in cold Kα radiation (2–9 Å, depending on the target material) and up to 2×1011 photons are obtained in 2π srd with the unresolved transition array (UTA) emission from the Ta target.