Abstract
In recent years, a number of authors have suggested several geometric principles for the design of nature reserves based upon the hypothesis that nature reserves are analogous to land-bridge islands. Land-bridge islands are islands that were formerly connected to the mainland and were created by a rise in the level of the ocean. Land-bridge islands are considered supersaturated with species in that the ratio of island to mainland species numbers is higher than expected from the area of the island. As a result, the rate of extinction should exceed the rate of colonization on a land-bridge island, resulting in a loss of species that is suggested to be related to the size and degree of isolation of the island. If nature reserves are considered to be similar to land-bridge islands, because most are slowly becoming isolated from their surroundings by habitat disturbance outside the reserves, several predictions follow. First, the total number of extinctions should exceed the total number of colonizations within a reverse; second, the number of extinctions should be inversely related to reserve size; and third, the number of extinctions should be directly related to reserve age. I report here that the natural post-establishment loss of mammalian species in 14 western North American national parks is consistent with these predictions of the land-bridge island hypothesis and that all but the largest western North American national parks are too small to retain an intact mammalian fauna.