Quantum Monte Carlo Calculations of Light Nuclei

Abstract
Accurate quantum Monte Carlo calculations of ground and low-lying excited states of light p-shell nuclei are now possible for realistic nuclear Hamiltonians that fit nucleon-nucleon scattering data. At present, results for more than 30 different (J^pi;T) states, plus isobaric analogs, in A \leq 8 nuclei have been obtained with an excellent reproduction of the experimental energy spectrum. These microscopic calculations show that nuclear structure, including both single-particle and clustering aspects, can be explained starting from elementary two- and three-nucleon interactions. Various density and momentum distributions, electromagnetic form factors, and spectroscopic factors have also been computed, as well as electroweak capture reactions of astrophysical interest.

This publication has 0 references indexed in Scilit: