Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases

Abstract
Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes. Individuals with Type 2 diabetes (T2D) can present with variable clinical characteristics. It is well known that obesity is a major risk factor for type 2 diabetes, yet patients can vary considerably—there are many lean diabetes patients and many overweight people without diabetes. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI2) compared to obese cases (BMI≥30 Kg/m2). Specifically, as lean T2D patients had lower risk than obese patients, they must have been more genetically susceptible. Using genetic data from multiple genome-wide association studies, we tested genetic markers across the genome in 2,112 lean type 2 diabetes cases (BMI2), 4,123 obese cases (BMI≥30 kg/m2), and 54,412 healthy controls. We confirmed our results in an additional 2,881 lean cases, 8,702 obese cases, and 18,957 healthy controls. Using these data we found differences in genetic enrichment between lean and obese cases, supporting our original hypothesis. We also searched for genetic variants that may be risk factors only in lean or obese patients and found two novel gene regions not previously reported in European individuals. These findings may influence future study design for type 2 diabetes and provide further insight into the biology of the disease.