Monofunctors as Reflectors
Open Access
- 1 November 1971
- journal article
- Published by JSTOR in Transactions of the American Mathematical Society
- Vol. 161, 293-306
- https://doi.org/10.2307/1995944
Abstract
In a well-powered and co-well-powered complete category <!-- MATH $\mathcal{K}$ --> with weak amalgamations, the class M of all reflective subcategories with a monofunctor as reflector forms a complete lattice; the limit-closure of the union of any class of elements of M belongs to M. If <!-- MATH $\mathcal{K}$ --> has injective envelopes, then the set-theoretical intersection of any class of elements of M belongs to M.
Keywords
This publication has 9 references indexed in Scilit:
- Diagonalisierungspaare. IIMathematische Zeitschrift, 1971
- Torsion Theories, Additive Semantics, and Rings of QuotientsLecture Notes in Mathematics, 1971
- An example in category theoryMathematische Zeitschrift, 1970
- Monomorphisms, Epimorphisms, and Pull-BacksJournal of the Australian Mathematical Society, 1969
- Reflectors as Compositions of Epi-ReflectorsTransactions of the American Mathematical Society, 1969
- Full reflective subcategories and generalized covering spacesIllinois Journal of Mathematics, 1968
- Topologische Reflexionen und CoreflexionenLecture Notes in Mathematics, 1968
- A Torsion Theory for Abelian CategoriesTransactions of the American Mathematical Society, 1966
- Des catégories abéliennesBulletin de la Société Mathématiques de France, 1962