Modular organization of inteins and C‐terminal autocatalytic domains
Open Access
- 1 January 1998
- journal article
- research article
- Published by Wiley in Protein Science
- Vol. 7 (1) , 64-71
- https://doi.org/10.1002/pro.5560070106
Abstract
Analysis of the conserved sequence features of inteins (protein “introns”) reveals that they are composed of three distinct modular domains. The N-terminal (N) and C-terminal (C) domains are predicted to perform different parts of the autocatalytic protein splicing reaction. An optional endonuclease domain (EN) is shown to correspond to different types of homing endonucleases in different inteins. The N domain contains motifs predicted to catalyze the first steps of protein splicing, leading to the cleavage of the intein N terminus from its protein host. Intein N domain motifs are also found in C-terminal autocatalytic domains (CADs) present in hedgehog and other protein families. Specific residues in the N domain of intein and CADs are proposed to form a charge relay system involved in cleaving their N-termini. The intein C domain is apparently unique to inteins and contains motifs that catalyze the final protein splicing steps: ligation of the intein flanks and cleavage of its C terminus to release the free intein and spliced host protein. All intein EN domains known thus far have dodecapeptide (DOD, LAGLI-DADG) type homing endonuclease motifs. This work identifies an EN domain with an HNH homing-endonuclease motif and two new small inteins with no EN domains. One of these small inteins might be inactive or a “pseudo intein.” The results suggest a modular architecture for inteins, clarify their origin and relationship to other protein families, and extend recent experimental findings on the functional roles of intein N, C, and EN motifs.Keywords
Funding Information
- Howard Hughes Medical Institute
- Sciences Research Foundation
- NIH (GM29009)
This publication has 54 references indexed in Scilit:
- Homing endonucleases: keeping the house in orderNucleic Acids Research, 1997
- Warthog and Groundhog, novel families related to HedgehogCurrent Biology, 1996
- Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding RegionsDNA Research, 1996
- Automated construction and graphical presentation of protein blocks from unaligned sequencesGene, 1995
- Substitutions in Conserved Dodecapeptide Motifs That Uncouple the DNA Binding and DNA Cleavage Activities of PI-SceI EndonucleasePublished by Elsevier ,1995
- Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II intronsTrends in Biochemical Sciences, 1994
- Self‐splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new familyProtein Science, 1994
- Mutations at the putative junction sites of the yeast VMA1 protein, the catalytic subunit of the vacuolar membrane H+-ATPase, inhibit its processing by protein splicingBiochemical and Biophysical Research Communications, 1992
- Basic local alignment search toolJournal of Molecular Biology, 1990
- The protein data bank: A computer-based archival file for macromolecular structuresJournal of Molecular Biology, 1977