Numerical models of irrotational binary neutron stars in general relativity

Abstract
We report on general relativistic calculations of quasiequilibrium configurations of binary neutron stars in circular orbits with zero vorticity. These configurations are expected to represent realistic situations as opposed to corotating configurations. The Einstein equations are solved under the assumption of a conformally flat spatial 3-metric (Wilson-Mathews approximation). The velocity field inside the stars is computed by solving an elliptical equation for the velocity scalar potential. Results are presented for sequences of constant baryon number (evolutionary sequences). Although the central density decreases much less with the binary separation than in the corotating case, it still decreases. Thus, no tendency is found for the stars to individually collapse to black hole prior to merger.

This publication has 0 references indexed in Scilit: