Overproduction and domain structure of the glutamyl-tRNA synthetase of Escherichia coli

Abstract
The charging of glutamate on tRNAGlu is catalyzed by glutamyl-tRNA synthetase, monomer of 53.8 kilodaltons in Escherichia coli. To obtain the large amounts of enzyme necessary for the identification of structural domains, we have inserted the structural gene gltX in the conditional runaway-replication plasmid pOU61, which led to a 350-fold overproduction of glutamyl-tRNA synthetase. Partial proteolysis of this enzyme revealed the existence of preferential sites of attack that, according to their N-terminal sequences, delimit regions of 12.9, 2.3, 12.1, and 26.5 kilodaltons from the N- to C-terminal of the enzyme. Their sizes suggest that the 2.3-kilodalton fragment is a hinge structure, and that those of 12.9, 12.1, and 26.5 kilodaltons are domain structures. The 12.9-kilodalton domain of the glutamyl-tRNA synthetase of E. coli is the only long region of this enzyme displaying a good amino acid sequence similarity with the gluatminyl-tRNA synthetase of Escherichia coli.