Abstract
Surface albedo can be inferred from geostationary satellite measurements as long as the effects due to the atmosphere, the spectral response of the sensor, and the angular anisotropy of the reflected field are corrected. In this paper, we developed a method which includes ad hoc correction procedures for the three categories of effects. An application of the method is conducted over the Sahara and the African Sahel using METEOSAT radiances together with auxiliary data derived from other satellites (Tiros-N and Nimbus-7) and standard meteorological observations. The surface albedo maps are estimated over this region, at a spatial resolution compatible with one used in climate models, for 2 days representative of the dry and the wet seasons, respectively. The observed seasonal surface albedo change and the relationships between the surface and the planetary albedos are discussed in order to examine the validity of the method and the correction procedures. Abstract Surface albedo can be inferred from geostationary satellite measurements as long as the effects due to the atmosphere, the spectral response of the sensor, and the angular anisotropy of the reflected field are corrected. In this paper, we developed a method which includes ad hoc correction procedures for the three categories of effects. An application of the method is conducted over the Sahara and the African Sahel using METEOSAT radiances together with auxiliary data derived from other satellites (Tiros-N and Nimbus-7) and standard meteorological observations. The surface albedo maps are estimated over this region, at a spatial resolution compatible with one used in climate models, for 2 days representative of the dry and the wet seasons, respectively. The observed seasonal surface albedo change and the relationships between the surface and the planetary albedos are discussed in order to examine the validity of the method and the correction procedures.

This publication has 0 references indexed in Scilit: