Network component analysis: Reconstruction of regulatory signals in biological systems
Top Cited Papers
- 12 December 2003
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 100 (26) , 15522-15527
- https://doi.org/10.1073/pnas.2136632100
Abstract
High-dimensional data sets generated by high-throughput technologies, such as DNA microarray, are often the outputs of complex networked systems driven by hidden regulatory signals. Traditional statistical methods for computing low-dimensional or hidden representations of these data sets, such as principal component analysis and independent component analysis, ignore the underlying network structures and provide decompositions based purely on a priori statistical constraints on the computed component signals. The resulting decomposition thus provides a phenomenological model for the observed data and does not necessarily contain physically or biologically meaningful signals. Here, we develop a method, called network component analysis, for uncovering hidden regulatory signals from outputs of networked systems, when only a partial knowledge of the underlying network topology is available. The a priori network structure information is first tested for compliance with a set of identifiability criteria. For networks that satisfy the criteria, the signals from the regulatory nodes and their strengths of influence on each output node can be faithfully reconstructed. This method is first validated experimentally by using the absorbance spectra of a network of various hemoglobin species. The method is then applied to microarray data generated from yeast Saccharamyces cerevisiae and the activities of various transcription factors during cell cycle are reconstructed by using recently discovered connectivity information for the underlying transcriptional regulatory networks.Keywords
This publication has 20 references indexed in Scilit:
- Transcriptional regulatory networks and the yeast cell cycleCurrent Opinion in Cell Biology, 2002
- Linear modes of gene expression determined by independent component analysisBioinformatics, 2002
- Serial Regulation of Transcriptional Regulators in the Yeast Cell CycleCell, 2001
- Dynamic modeling of gene expression dataProceedings of the National Academy of Sciences, 2001
- Regulatory element detection using correlation with expressionNature Genetics, 2001
- Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBFNature, 2001
- Genome-Wide Location and Function of DNA Binding ProteinsScience, 2000
- Singular value decomposition for genome-wide expression data processing and modelingProceedings of the National Academy of Sciences, 2000
- Building a dictionary for genomes: Identification of presumptive regulatory sites by statistical analysisProceedings of the National Academy of Sciences, 2000
- Fundamental patterns underlying gene expression profiles: Simplicity from complexityProceedings of the National Academy of Sciences, 2000