Bulgeless Giant Galaxies Challenge our Picture of Galaxy Formation by Hierarchical Clustering
Preprint
- 15 September 2010
Abstract
We dissect giant Sc-Scd galaxies with Hubble Space Telescope photometry and Hobby-Eberly Telescope spectroscopy. We use HET's High Resolution Spectrograph (resolution = 15,000) to measure stellar velocity dispersions in the nuclear star clusters and pseudobulges of the pure-disk galaxies M33, M101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. We conclude: (1) Upper limits on the masses of any supermassive black holes are MBH <= (2.6+-0.5) * 10**6 M_Sun in M101 and MBH <= (2.0+-0.6) * 10**6 M_Sun in NGC 6503. (2) HST photometry shows that the above galaxies contain tiny pseudobulges that make up <~ 3 % of the stellar mass but no classical bulges. We inventory a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk galaxies are common or rare. In this volume, 11 of 19 galaxies with rotation velocity > 150 km/s show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5-12% of the galaxy light. Only 4 of the 19 giant galaxies are ellipticals or have classical bulges that contribute 1/3 of the galaxy light. So pure-disk galaxies are far from rare. It is hard to understand how they could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? This problem depends strongly on environment: the Virgo cluster is not a puzzle, because >2/3 of its stellar mass is in merger remnants.Keywords
All Related Versions
- Version 1, 2010-09-15, ArXiv
- Published version: The Astrophysical Journal, 723 (1), 54.
This publication has 0 references indexed in Scilit: