Verapamil diminishes action potential changes during metabolic inhibition by blocking ATP-regulated potassium currents.

Abstract
Verapamil has beneficial effects on ischemic myocardium, including reduction in electrophysiological derangements, prevention of intracellular K+ loss, and preservation of high-energy phosphates, but the mechanisms underlying these actions are not clear. Recent studies have demonstrated a role of ATP-regulated K+ (KATP) current in action potential shortening and K+ loss during ischemia and metabolic inhibition. Therefore, we studied the effects of verapamil on KATP current in feline ventricular myocytes to test the hypothesis that the drug prevents ischemic electrophysiological disturbances by affecting the KATP channel. Membrane potentials and currents were recorded using standard patch-clamp techniques. During 15-minute superfusion with 1 mM CN-, action potential duration measured at 90% repolarization was reduced from 259 +/- 12 to 98 +/- 15 msec (62% reduction) in the absence of verapamil and from 266 +/- 11 to 183 +/- 16 msec (31% reduction) in the presence of 2 microM verapamil (p less than 0.01). I...