Contribution of Components of Tomato Fruit Alcohol Insoluble Solids to Genotypic Variation in Viscosity1

Abstract
Three tomato (Lycopersicon esculentum Mill.) lines with divergent viscosities and their F1, BCP1, BCP2, and F2 progeny were analyzed for serum viscosity, gross viscosity, and five alcohol insoluble solids (AIS) components. The components were water soluble polysaccharides and polygalacturonides, water-insoluble polysaccharides and polygalacturonides, and acid-hydrolyzed polysaccharides. Stepwise regression analysis of data from parents and progeny was used to establish the relationships between a change in composition and a change in viscosity. The polygalacturonides accounted for most of the variation in gross viscosity among the parental lines. The data indicate that water-insoluble, pectinol-solubilized polysaccharides have the potential for making a large contribution to viscosity at higher concn. The water-soluble polysaccharides and complex polysaccharides (solublized in H2SO4) contributed little to gross viscosity. The sugars identified in the AIS were arabinose, ribose, xylose, mannose, galactose, and glucose. Galacturonic acid was the only organic acid detected. Concentration of the compounds varied among the fractions and among the parental lines.

This publication has 0 references indexed in Scilit: